

ADVANCES IN PLANT-MICROBE MEDIATED REMEDIATION OF GLYPHOSATE

Komal Maqbool

Department of Environmental Science, University of Lahore, Lahore, Pakistan

Komalmaqbool5782@gmail.com

Keywords

Bioremediation; Glyphosate; Biodegradation; Pesticides; Rhizodegradation; Toxicity

Article History

Received: 21 January 2025
Accepted: 23 February 2025
Published: 31 March 2025

Copyright @Author

Corresponding Author: *
Komal Maqbool

Abstract

Glyphosate (GLA) has long been the primary herbicide used to control both annual and perennial weeds. However, its extensive application has resulted in widespread persistence in agroecosystems, posing risks to both biotic and abiotic components of the environment. To address these impacts, various remediation strategies—such as adsorption, photocatalytic degradation, and microbial degradation—have been investigated. Among these, microbial degradation, particularly rhizodegradation, stands out for its efficiency, versatility, and eco-friendly nature. Rhizodegradation relies on diverse microorganisms that metabolize GLA, using its carbon, nitrogen, and phosphorus as nutrient sources. This review consolidates current understanding of microbial GLA degradation, emphasizing the role of GLA-degrading microorganisms in remediating contaminated environments. It explores the mechanisms by which microbes break down GLA and the interactions that facilitate its detoxification. Additionally, the review assesses the practicality and effectiveness of employing GLA-degrading microbes in bioremediation across various ecological contexts. By detailing microbial degradation pathways and their environmental significance, this article provides a solid foundation for developing sustainable strategies to manage GLA contamination and mitigate its ecological consequences.

INTRODUCTION

Glyphosate: a potent herbicide

Glyphosate (GLA) is a broad-spectrum post-emergent herbicide used in agriculture (Schütte *et al.*, 2017). Due to its low production cost, it is widely used for weed eradication worldwide. As weeds severely limit the production of crops by up to 29% and reduce their yield by 47%. Historically, mechanical weeding has been the main form of weeding, and it can effectively control weeds and provide favorable conditions for crop growth. However, mechanical weeding increases the risk of soil erosion, reduces soil organic matter, and affects the physical, chemical, and biological properties of soil. In addition, repeated mechanical weeding practices

increases labor and energy costs, thereby reducing farmer's income (Mitchell *et al.*, 2016). That is why, the use of herbicides increased to overcome these problems without compromising farmers' economic benefits.

It is one of the most used herbicides in agriculture since the 1990s, and its use has increased rapidly (Benbrook, 2016). It is estimated that between 1994 - 2014, the use of GLA has increased by nearly 15 times globally (Benbrook, 2016), indicating that the application of GLA active ingredients in the global farmland is 0.53 kg/ha including United States which is 1.0 kg/ha. Between 1996 to 2011, use of herbicides in the developed countries like United

States increased by 239 million kg, of which GLA was the main component (Benbrook, 2016). In Australia, herbicides used increased by 30% between 2002 and 2012, having cost US\$ 700 million to US\$ 1.1 billion, respectively (Yang *et al.*, 2018). It is estimated that GLA being a part of approximately 50% of all pesticides used in the United States and 40% globally (USEPA, 2011).

Among Asia-pacific countries, China and India are the main users of GLA but there is shifting going on in European Union due to regulatory issues. In other continents i.e., Africa, South Africa are the main user of GLA. According to the African Biodiversity Center (ABC), 12 to 20 million liters increased has been seen in the use of GLA from 2008 to 2012 as the imports of GLA increased by 177%. As the use of GLA results in high yield and give economic benefits to farmers, its use is increased with the passage of time. But cultivation of genetically modified

Initial production and its applicability

Glyphosate was first synthesized in 1950 (Franz *et al.*, 1997). Commercially, it was approved in 1975 for commercial use as herbicide for maize and many other crops grown on farms, orchards, and vineyards (Richmond, 2018). In early 1970s, Monsanto improved the quality in the present formulation of GLA herbicide. It was registered and used for the first

time in the United States in 1974 (Gill *et al.*, 2017), and was accepted widely as its usage was increased from 10,000 to 80,000 tons/year in 1992 and 2007, respectively and still expanding (Coupe *et al.*, 2012). In 2017 1.35 million tons GLA was used for different field purposes (Van Bruggen *et al.*, 2018).

Due to its adsorption behavior with soil minerals and clays, it is immobile in the soil to leach down in ground water. But its biologically converted product (aminomethyl phosphoric acid (AMPA) is unstable (Rose *et al.*, 2016). During biodegradation, GLA-oxidoreductase degrades the C-N bond to produce AMPA and glyoxylic acid. During this cycle, intermediates of sarcosine and glycine are formed by C-P lyase and sarcosine oxidase enzymes (Hove-Jensen *et al.*, 2014). Glyphosate application significantly affects microbial biomass and activity, soil nutrient status and availability by interfering with microbial activity and seed germination (Nguyen *et al.*, 2016). It affects the health of humans and other organisms by entering the food chain, and its negative impact ranges from stimulation to cancer risk (Van Bruggen *et al.*, 2018) (Table 1).

Glyphosate contamination

Glyphosate is the most used herbicide and considered as non-toxic. But its excessive use in farmland pollutes the

Table 1: Chemical and physical c

General Name	IUPAC name	MW (g/mol)	Chemical formula	Solubility in water (g/L)	Log P (at 25 °C)	Density (g/cm³)
Glyphosate	2-(phosphonomethylamino)Acetic acid; propan-2-amine	228.185	C ₆ H ₁₇ N ₂ O ₅ P	12	-5.4	1.7
Aminomethylphosphonic Acid	-	111.04	CH ₆ NO ₃ P	50	0.4	1.6
Sarcosine	N-methylglycine	89.093	C ₃ H ₇ NO ₂	89.09	-2.8	1.093
Glyoxylate	Glyoxylic acid	74.035	C ₂ H ₂ O ₃	224	-0.07	1.384

Formylphosphonate	Formylphosphonic Acid	110.00	CH ₃ O ₄ P	24.8	- 1.8	1.79
Methylamine	Méthanamine	5	CH ₅ N	100	- 0.57	0.693
Glycine	2-Aminoacetic acid	31.057	C ₂ H ₅ NO ₂	249.9	- 3.2	1.61

Characteristics of glyphosate and its metabolites

(Singh *et al.*, 2020)

crops in combination with GLA is not beneficial as approximately 85% of genetically modified maize and soybean varieties are resistant to GLA. GLA residues can be found in soils which are

frequently supplied with GLA. In addition to the soil contamination, water resources and food is also

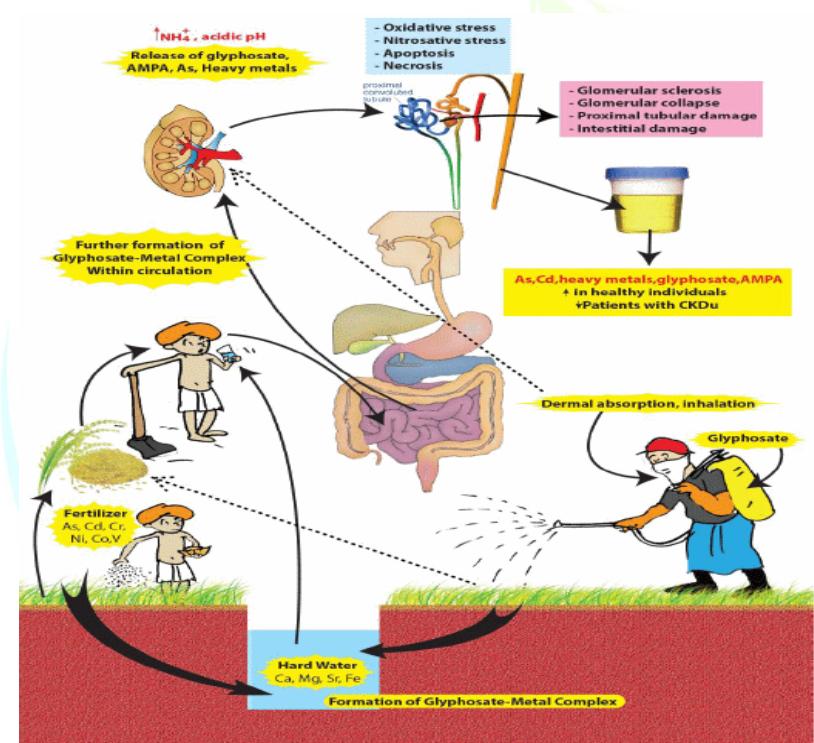


Figure 1: Effects of glyphosate application on human health. (Jayasumana *et al.*, 2014)

contaminated and can cause severe toxicological effects (Figure 1). The adverse effects on single-celled organisms to multicellular organisms have been observed from many experiments. For example, GLA reduces the rate of photosynthesis of Euglena, limits the radial growth of mycorrhizal fungal species and proliferation of certain bacteria in the rhizosphere microbial community. In multicellular organisms, GLA can pose serious threats such as genotoxicity, cytotoxicity, nuclear aberrations, hormone

destruction, chromosomal aberrations to DNA damage (Tarazona *et al.*, 2017; Gill *et al.*, 2018). The rhizospheric soils of maize and soybean are main source of bacteria, proteobacteria, acidobacteria, and actinomycetes in varying amounts. But after the application of GLA, the relative abundance of these organisms recorded to be decreased (Newman *et al.*, 2016). The floating aquatic plant *Ludwigia peploides* is widely distributed in American rivers. Functional analysis of its differentially expressed genes revealed

the destruction of several key biological processes, such as energy metabolism and Ca^{2+} homeostasis, cell signaling and endoplasmic reticulum stress response due to the mixing of agricultural runoff water from GLA applied fields (Pérez *et al.*, 2017). Glyphosate concentrations in freshwater mussels (*Mytilus galloprovincialis*) were also recorded higher (10 - 1000 $\mu\text{g/L}$) after their exposure to GLA for 7, 14, and 21 days. Several biomarkers (antioxidant enzyme and acetylcholinesterase activity) were also affected by higher GLA concentration, highlighting the potential risks of GLA to aquatic invertebrates (Matozzo *et al.*, 2018). The US

Remediation of glyphosate: possible approaches and mechanisms

Bioremediation

Bioremediation is the use of living entities for the remediation of pollutants. It could be done using microbes or plants. But, before their use as bioremediation agents, they should have the ability to decompose pollutants rapidly without producing or affecting the environment. (Ghosal *et al.*, 2016) Bioremediation standards include that no hazardous by-products must be formed, inhibitory compounds must be inattentive, pollutants must be bioavailable, environments must be augmented and also maintained microbial biomass and their activities. The diverse technologies used for bioremediation be contingent on three elementary principles, namely the adaptability of pollutants to biotransformation, the availability of pollutants to microorganisms, and the chance to optimize biological activity.

In situ bioremediation

In-situ bioremediation attempts to remediate the polluted environment at the polluted spot and avoid the transportation of pollutants to other places. It a cheap and ideal choice, as the interference caused at the application site is minimal. Chemotaxis is significant for in-situ bioremediation studies as microbes with chemotactic capabilities can migrate into areas comprising toxins. Ballarini *et al.*, (2014)

$\mu\text{g/L}$) after their exposure to GLA for 7, 14, and 21 days. Several biomarkers (antioxidant enzyme and acetylcholinesterase activity) were also affected by higher GLA concentration, highlighting the potential risks of GLA to aquatic invertebrates (Matozzo *et al.*, 2018). The US

found that improving the chemotactic behaviour of bacteria can enhance the effectiveness of in-situ bioremediation. If pesticides are used, they can be processed in-situ using numerous media. One of the finest examples is the use of molds as degrading agent for pesticides. In research laboratory analysis, white rot fungi have been found to be able to degrade pesticides 45-75% more effectively than control samples (Magan *et al.*, 2010).

Bioventing

Bioventing is a practice, in which oxygen and micro-nutrients are injected into the polluted sites to sustain and accelerate bioremediation (Shanahan, 2004). Nitrogen and phosphorus are two common nutrients which are added for this purpose. But it is difficult to operate this method to every soil type. Different soil factors disturb this technique like fine textured soil (such as clay) has less absorptivity, which precludes the diffusion of oxygen and micro-nutrients from the organisms through the soil and it becomes challenging to regulate the moisture level of fine-textured soil. Moreover, fine-textured soil is easily lost from water-saturated soil conditions, preventing oxygen from reaching soil microorganisms throughout the contaminated area (Ahmadpour *et al.*, 2012). To overcome this problem, biological ventilation is used for proper supply of oxygen to clayey soils which drives air across the well into the soil (Behera, 2014; Jónsson and Davíðsdóttir, 2016).

Biosparging

Biosparging involves injection of air below the groundwater level under pressure to increase the oxygen concentration in the groundwater to increase biodegradation rate of pollutants through native bacteria. The convenience and difficult to installing tiny diameter air injection spots make the system design and construction quite flexible. Before installation of the system, the degree and type of pollution along with soil attributes must be assessed

to evaluate the suitability. These methods are not appropriate for composites that are too volatile. Bio-injection promotes mutually aerobic biodegradation. This technique is usually utilized for the restoration of hydrocarbon and gasoline polluted areas (Marchand *et al.*, 2010).

Bioaugmentation

When microorganisms are introduced into polluted locations to augment degradation, the procedure is called bioaugmentation. But the disadvantages associated to this technique are, a) the familiarized microbes rarely contest with native microbes, making it impossible to develop and maintain useful population levels: b) most soils that have been exposed to biodegradable waste for a long time contain effectively degradable microorganism. Bioaugmentation is usually combined with bio-stimulation, in which sufficient water, nutrients, and oxygen are also introduced into the contaminated site to enhance the activity of the introduced microbial degraders or to promote metabolism. The concept of bio-stimulation is to increase the degradation potential of contaminated substrates by adding micro-nutrients or reducing bioremediation limiting factors (Khan *et al.*, 2013; Xu *et al.*, 2014; Gkorezis *et al.*, 2016).

Ex-situ bioremediation Landfarming

Landfarming includes digging of contaminated soil and sieving it via mechanical separation. The contaminated soil is then placed on clean soil in layers, and natural processes degrade the contaminants. Sometimes, concrete or clay films are used to conceal the contaminated soil layer. Oxygen can also be added to accelerate the process. Crushed limestone or agricultural lime can also be used to adjust the pH of the soil (maintain it near 7.0). Tillage is practiced in pesticides contaminated soils for landfarming purposes (Chattopadhyay and Chattopadhyay, 2015). Since the 1950s, huge quantities of pesticides used in all around the world to control pest. Based on the soil analysis and environmental surveys, FAO has developed site-specific remediation plans. Remediation is usually established on the cost of nutrients supply which are supplied to microbes for degradation of contaminants (Morillo and Villaverde, 2017).

Biopiling

Biopiling method is comprised of a treatment bed, polluted soil pile, aeration facility, water and nutrient supply and a leachate collection system. Heat, humidity, micro-nutrients, pH, and oxygen are the factors that control this process (Kuppusamy *et al.*, 2016).

Composting

In composting process, microorganisms are used for the degradation of organic wastes and pollutants at a high temperature of 55 - 65°C. During the composting, heat is produced which leads to an increase in the degradation ability of the microbes and their metabolic activity. There are more microbial populations in compost than in soil. General steps in composting are, excavation and screening of contaminated soil to eliminate large stones and garbage, its transportation to the composting facility and addition of amendments (alfalfa, wheat straw, fertilizer, farming waste and wood chips) as supplementary carbon source. Then the contaminated soil and the amendments are covered into piles. During the composting process, humidity, temperature, pH and explosive intensity are continuously monitored (Shao *et al.*, 2009).

Bioreactors

Bioreactors use the contaminated soil which is interspersed with water and micro-nutrients, and the blended material is stirred through a systematic bioreactor to invigorate the act of microbes. This approach is more suitable for clayey soils and is usually a fast procedure. Numerous types of bioreactors can be used, such as bio-slurry reactors, fermentation tanks, fictitious bed reactors and many closed structures, which should be used if the prospective hazards of discharge are exceptionally serious. In bioreactor, GLA degradation was most effective in the medium with pH 7.0 and aeration rate was 10-60% of air saturation supplemented with glutamate and ammonium chloride as resource of nitrogen and carbon, respectively. Due to the adaption of microbial cells and induction of the relevant enzymatic system, the microbial culture grown in the presence of GLA exhibited 1.5-2-fold higher efficiency of GLA degradation (Shushkova *et al.*, 2017).

al., 2012; Roy et al., 2014; Agnello et al., 2016; Morillo and Villaverde, 2017)

Electro dialysis

Electrodialysis is a method that uses flux and a unique semi-permeable electric charge-based membrane. The cation-permeable membrane and the anion-permeable membrane have flow channels among them, and conductors are alternately situated on each side of the membrane. The electrode attracts counter ions via the membrane to remove it from the wastewater. Recently, this method has been used to remove pesticides from sewage (Mikhaylin and Bazinet, 2016).

Phytoremediation

Plant-aided bioremediation has been used for more than 300 years, and has become an eco-friendly approach for remediating various soil contaminants. It is a cheap, and efficient technique that can be utilized in the field. Most importantly, its monitoring is very easy process. Valuable products may also be recycled and reused. In fact, it is the usage of the distinctive and discriminating functions of plant roots, as well as uptake, conversion, volatilization, and rhizospheric degradation, which are crucial practices used in the procedure of phytoremediation. In this process, the plant provides a favourable micro-environment around its roots, which is conducive to the degradation of pollutants. Not only rhizobacteria but also endophytic microbes are implicated in the degradation of toxic pollutants in the soil environment (Liu et al., 2017).

Endogenous microbes are generally non-pathogenic and naturally occur in the inner tissues of plants. They can stimulate the growth of plants by generating a variety of natural products and promote the biodegradation of soil contaminants. The use of bacterial endophytes to reduce the level of toxic herbicide residues in crops. (Jha et al., 2015; John and Shaike, 2015) revealed that the inoculated pea plants (*Pisum sativum*) with poplar endophytes have ability to degrade 2,4-dichlorophenoxy acetic acid (2,4-D).

There has been a lot of research on the use of phytoremediation to remediate pesticides from the natural environment. Plant roots soak up pesticides on the surface, and dead roots add up organic matter to the soil, which can improve the adsorption of

pesticides on organic matter in soil that may undergo bacterial transformation (Morillo and Villaverde, 2017). According to preliminary research on Kochia sp. of plant degradation of trifluralin, metolachlor and atrazine increased in the contaminated soil. Deep-rooted of poplar has also successfully reclaimed atrazine contaminated soil and groundwater. Majsztrik et al. (2017) studied the phytoremediation potential of the aquatic plant *Lemna minor*, which can eliminate GLA and isoproturon from the contaminated water. Using biotechnological tools can make phytoremediation more efficient. Bacteria (endophytic bacteria or rhizosphere) can be engineered via gene allocation to degrade hazardous pollutants existing in the environment. Though, genetic engineering of endogenous, rhizobacteria and genetically modified plants looks a favourable method for remediating polluted sites. The phytoremediation of pesticides has been thoroughly researched using the traditional plants. Transgenic plants manufactured to metabolize pesticides and prolonged contaminants can be utilized for plants to phytoremediate in soil and water (Mathew et al., 2017).

Rhizoremediation

Rhizospheric microorganisms are found near roots and involved in plant growth promotion are known as plant growth promoting rhizobacteria (PGPR). These microorganisms play an important role in recycling plant nutrients, maintaining soil structure, detoxifying toxic chemicals and controlling plant pests. On the other side, root secretions give nutrients for rhizosphere microorganisms, thereby boosting the action of microorganisms in the rhizosphere, thereby stimulating the growth of plants and reducing the toxicity of metal in plants. PGPR and arbuscular mycorrhizal fungi (AMF) that promote plant growth has received much attention worldwide. The presence of contaminants in the soil tends to naturally choose organisms (such as bacteria, yeast, and fungi) that like the compound as a resource of food and vitality (Ma et al., 2011).

Rhizoremediation uses the root exudates and naturally occurring rhizospheric microorganisms or certain microorganisms separated by enrichment methods for degradation of pollutants. This technique has great remediation potential. The

reason behind it is the stimulation of microbes through root exudates. The success of rhizosphere restoration depends on many factors such as climate, soil conditions, suitable plant species, and related rhizosphere microorganisms (Figure 2). In some cases, radical application can have a direct impact on the concentration of pollutants during implanting. In additional cases, it may take numerous seasons for plants to interact deeply with contaminated areas. In

addition, this may differ on whether the plant itself is unambiguously or ramblingly intricate in the remediation of pollutants (Fatima, 2019).

Root exudates such as sugar, alcohol, and organic acids are used by the microbes to enhance microbial growth and pollutant remediation activity. Some of these compounds can also serve as chemotactic signals for microorganisms. The plant roots also loosen the soil and transport water to

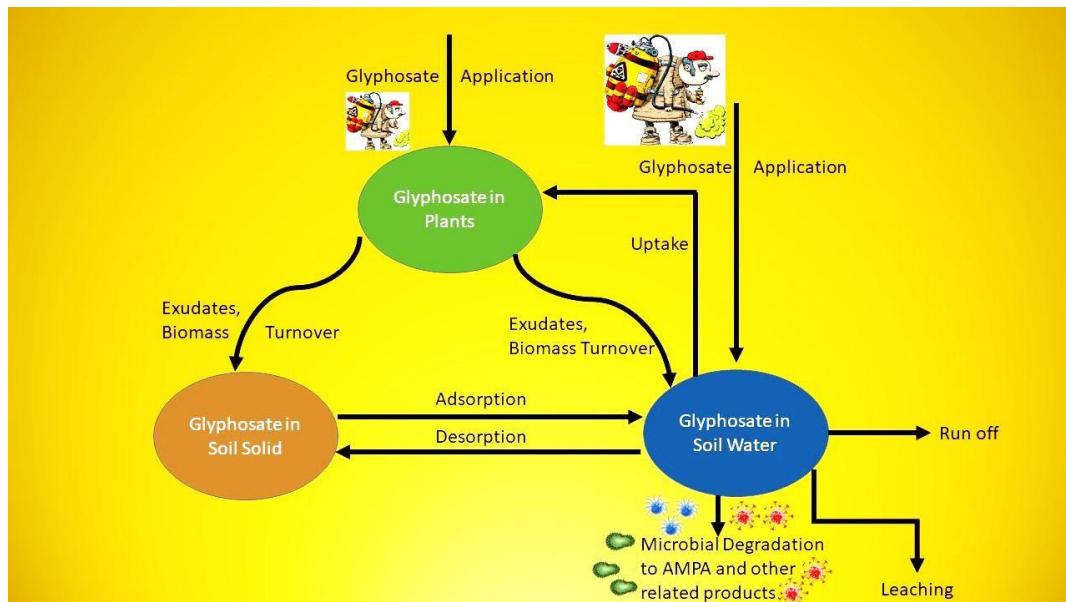


Figure 2: Potential events, takes place after glyphosate application

the rhizosphere, which further enhances the activity of microorganisms.

The degradation, metabolism, or mineralization rate of pollutants in the soil varies on the biological activity of PGPR and AMF in the soil, which is mainly derivative from the enzyme and proteins of soil bacteria. However, the decomposition of contaminants is generally restricted by the accessibility of electron acceptors or donors, co-metabolites, plant vitamins, in-organic nutrients, hormones, pH and

Remediation of glyphosate using rhizospheric bacteria

Glyphosate tolerant PGPR (*Pseudomonas aeruginosa* and *Bacillus cereus*) used in the remediation of GLA contaminated soil. Soil samples were spiked with GLA at 3.1 mg/ml, 7.2 mg/ml and 14.4 mg/ml, and then inoculated with *Pseudomonas aeruginosa* and *Bacillus cereus*. Readings were noted by using the gas chromatography-mass

Table 2: Microbial species involved in degradation water

Microbial species	Intermediate s	Geographical location	Source	References
<i>Achromobacter</i> sp.	Sacrosine	Russia	Soil	(Vandermaesen et

MPS 12 A					al., 2016)
<i>Achromobacter</i> sp. 16 kg	-	Russia	Soil	(Ermakova <i>et al.</i> , 2017)	
<i>Aspergillus niger</i>	Nigeria	AMPA and sarcosine	Soil	(Singh <i>et al.</i> , 2019)	
<i>Aspergillus oryzae</i> A-F02	China	AMPA and methylamine	Soil	(Fu <i>et al.</i> , 2017)	
<i>A. section Flavi</i> and <i>A. niger</i>	Argentina	-	-	(Carranza <i>et al.</i> , 2017)	
<i>Bacillus subtilis</i>	India	AMPA and methylamine	Soil	(Singh <i>et al.</i> , 2019)	
<i>Bacillus cereus</i> CB4	China	AMPA, glyoxylate, sarcosine, glycine and formaldehyde	Soil	(Fan <i>et al.</i> , 2012)	
<i>Comamonas odontotermitis</i> P2	Pakistan		Soil	(FIRDOUS <i>et al.</i> , 2017)	
<i>Fusarium oxysporum</i>	Nigeria	AMPA and sarcosine	Soil	(Singh <i>et al.</i> , 2019)	
<i>Geobacillus caldoxylolyticus</i> T20	UK	AMPA	-	(Obojska <i>et al.</i> , 2002)	
<i>Ochrobactrum anthropi</i> GDOS	Iran	AMPA	Soil	(Hadi <i>et al.</i> , 2013)	
<i>Ochrobactrum anthropi</i> GPK 3	Russia	-	Soil	(Ermakova <i>et al.</i> , 2017)	
<i>Pseudomonas pseudomallei</i>	USA	AMPA	Soil	(Peñaloza-Vazquez <i>et al.</i> , 1995)	
<i>Rhizobium leguminosarum</i>	India	AMPA and methylamine	Soil	(Singh <i>et al.</i> , 2019)	
<i>Rhizobium meliloti</i> 1021	Massachusetts, USA	Sarcosine	Mutation of the wild strain	(Kremer and Means, 2009)	
<i>Streptomyces</i> sp.	India	AMPA and methylamine	Soil	(Singh <i>et al.</i> , 2019)	
<i>Penicillium notatum</i>	Poland	AMPA	Mutation of the wild type	(Bujacz <i>et al.</i> , 1995)	
<i>Ochrobactrum anthropi</i> GPK 3	Russia	-	Soil	(Ermakova <i>et al.</i> , 2017)	
<i>Achromobacter</i> sp. 16 kg					
<i>Trichoderma viridae</i>	Nigeria	AMPA and sarcosine	Soil	(Sidhu <i>et al.</i> , 2019)	
<i>Trichoderma viride</i> Strain FRP 3	Indonesia		Soil	(Arfarita <i>et al.</i> , 2016)	

spectrometry before and after inoculation of the GLA bacteria. The spectrum of the contamination level after extraction was taken through acetonitrile (GC-MS). The bacterium showed significant ability to degrade GLA at 3.1 mg/ml GLA concentration, control, *Pseudomonas aeruginosa*, *Bacillus cereus* and

consortia showed a degradation percentage of recorded 49%, 76.11, 85.8, and 75.8%, respectively, while at a concentration of 7.2 mg/ml. Below, the mixed culture of *Pseudomonas aeruginosa*, and *Bacillus cereus*, isolate 1, isolate 2 and control degradation percentage were 84.9, 72.7, 66.4% and 39.2%,

respectively. The isolates also showed a significant degradation rate (separately and consortia) at a concentration of 14.4 mg/ml. GC-MS results showed that the degradation products changed significantly compared with the control. This study shows that large amounts of GLA are degraded by *Pseudomonas aeruginosa* and *Bacillus cereus*. Therefore, they may have great potential in the bioremediation of GLA-contaminated soil (Ezaka *et al.*, 2018) (Table 2).

Concluding remarks and future prospects

Undue extensive use of GLA also plays an important role to achieve highest crop yield and swift agricultural development. Though, due to its exhaustive use, GLA contamination has appeared as an imperative issue. The chronic negative effects of GLA on the environment should entice considerable interest to remove GLA residues from the contaminated environments. In Recent times, numerous methods such as phytoremediation, in-situ and ex-situ techniques could be used to efficiently degrade GLA. Consequently, GLA degrading microbes having effective degradation and bioremediation capabilities in GLA contaminated environments are deemed as the most encouraging approach. Different strains of microbes have been considered to degrade GLA by utilizing GLA as sole phosphorus (P), carbon (C) or nitrogen (N) source. Though, genetic and biochemical characteristics of highly effective degrading enzymes have yet not been appropriately investigated. Most of the GLA degrading microbes in which complete degradation path has been clearly understood should be utilized. The most ubiquitous GLA degradation pathway in microbial strains is the cleavage of C-N bond and change into AMPA which is either further decomposed or excreted to the environment. Consequently, before the substantial use of GLA degrading microbes for bioremediation, comprehensive foundation work should be achieved.

References

Agnello, A.C., M. Bagard, E.D. van Hullebusch, G. Esposito and D. Huguenot. 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. *Science of the Total Environment*. 563:693-703.

Ahmadpour, P., F. Ahmadpour, T. Mahmud, A. Abdu, M. Soleimani and F.H. Tayefeh. 2012. Phytoremediation of heavy metals: A green technology. *African Journal of Biotechnology*. 11:14036-14043.

Arfarita, N., D. Djuhari, B. Prasetya and T. Imai. 2016. The application of *trichoderma viride* strain frp 3 for biodegradation of glyphosate herbicide in contaminated land. *AGRIVITA, Journal of Agricultural Science*. 38:275-281.

Bai, S.H. and S.M. Ogbourne. 2016. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. *Environmental Science and Pollution Research*. 23:18988-19001.

Ballarini, E., C. Beyer, R. Bauer, C. Griebler and S. Bauer. 2014. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2d bench-scale tank experiments. *Biodegradation*. 25:351-371.

Behera, K.K. 2014. Phytoremediation, transgenic plants and microbes. In *Sustainable agriculture reviews*: Springer, 65-85.

Benbrook, C.M. 2016. Trends in glyphosate herbicide use in the united states and globally. *Environmental Sciences Europe*. 28:3.

Bujacz, B., P. Wieczorek, T. Krzysko-Lupicka, Z. Golab, B. Lejczak and P. Kavfarski. 1995. Organophosphonate utilization by the wild-type strain of *penicillium notatum*. *Applied and environmental microbiology*. 61:2905-2910.

Carranza, C.S., C.L. Barberis, S.M. Chiacchiera and C.E. Magnoli. 2017. Assessment of growth of *aspergillus* spp. From agricultural soils in the presence of glyphosate. *Revista Argentina de Microbiologia*. 49:384-393.

Chattopadhyay, S. and D. Chattopadhyay. 2015. Remediation of ddt and its metabolites in contaminated sediment. Current Pollution Reports. 1:248-264.

Coupe, R.H., S.J. Kalkhoff, P.D. Capel and C. Gregoire. 2012. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest management science. 68:16-30.

soil strains of *ochrobactrum anthropi* and *achromobacter* sp. Archives of microbiology. 199:665- 675.

Ezaka, E., A. Akintokun, P. Akintokun, L. Taiwo, A. Uthman, O. Oyedele and O. Aluko. 2018. Glyphosate degradation by two plant growth promoting bacteria (pgpb) isolated from rhizosphere of maize. Microbiology Research Journal International. 1-11.

Fan, J., G. Yang, H. Zhao, G. Shi, Y. Geng, T. Hou and K. Tao. 2012. Isolation, identification and characterization of a glyphosate-degrading bacterium, *bacillus cereus* cb4, from soil. The Journal of general and applied microbiology. 58:263-271.

Fatima, K. 2019. Insights into chemical interaction between plants and microbes and its potential use in soil remediation. BioScientific Review (BSR). 1:

Feng, N.X., J. Yu, H.-M. Zhao, Y.-T. Cheng, C.-H. Mo, Q.-Y. Cai, Y.-W. Li, H. Li and M.-H. Wong. 2017. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Science of the Total Environment. 583:352-368.

FIRDOUS, S., S. IQBAL and S. ANWAR. 2017. Optimization and modeling of glyphosate biodegradation by a novel *comamonas odontotermitis* p2 through response surface methodology. Pedosphere.

Franz, J.E., M.K. Mao and J.A. Sikorski. 1997. *Glyphosate: A unique global herbicide*: American Chemical Society.

Druille, M., M. Omacini, R.A. Golluscio and M.N. Cabello. 2013. Arbuscular mycorrhizal fungi are directly and indirectly affected by glyphosate application. Applied Soil Ecology. 72:143-149.

Ermakova, I.T., T.V. Shushkova, A.V. Sviridov, N.F. Zelenkova, N.G. Vinokurova, B.P. Baskunov and A.A. Leontievsky. 2017. Organophosphonates utilization by

Fu, G.-m., Y. Chen, R.-y. Li, X.-q. Yuan, C.-m. Liu, B. Li and Y. Wan. 2017. Pathway and rate-limiting step of glyphosate degradation by *Aspergillus oryzae* a-f02. Preparative Biochemistry and Biotechnology. 47:782-788.

Ghosal, D., S. Ghosh, T.K. Dutta and Y. Ahn. 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (pahs): A review. Frontiers in microbiology. 7:1369.

Gill, J.P.K., N. Sethi and A. Mohan. 2017. Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environmental chemistry letters. 15:85-100.

Gill, J.P.K., N. Sethi, A. Mohan, S. Datta and M. Girdhar. 2018. Glyphosate toxicity for animals. Environmental Chemistry Letters. 16:401-426.

Gkorezis, P., M. Daghio, A. Franzetti, J.D. Van Hamme, W. Sillen and J. Vangronsveld. 2016. The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in microbiology. 7:1836.

Hadi, F., A. Mousavi, K.A. Noghabi, H.G. Tabar and A.H. Salmanian. 2013. New bacterial strain of the genus *ochrobactrum* with glyphosate-degrading activity. Journal of Environmental Science and Health, Part B. 48:208-213.

Hove-Jensen, B., D.L. Zechel and B. Jochimsen. 2014. Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus lyase. *Microbiology and Molecular Biology Reviews*. 78:176-197.

Jayasumana, C., S. Gunatilake and P. Senanayake. 2014. Glyphosate, hard water and nephrotoxic metals: Are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in sri lanka? *International journal of environmental research and public health*. 11:2125-2147.

Jha, P., J. Panwar and P. Jha. 2015. Secondary plant metabolites and root exudates: Guiding tools for polychlorinated biphenyl biodegradation. *International Journal of Environmental Science and Technology*. 12:789-802.

John, E.M. and J.M. Shaike. 2015. Chlorpyrifos: Pollution and remediation. *Environmental Chemistry Letters*. 13:269-291.

Jónsson, J.Ö.G. and B. Davíðsdóttir. 2016. Classification and valuation of soil ecosystem services. *Agricultural Systems*. 145:24-38.

Khan, S., M. Afzal, S. Iqbal and Q.M. Khan. 2013. Plant- bacteria partnerships for the remediation of hydrocarbon contaminated soils. *Chemosphere*. 90:1317-1332.

Kremer, R.J. and N.E. Means. 2009. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. *European Journal of Agronomy*. 31:153-161.

Kuppusamy, S., T. Palanisami, M. Megharaj, K. Venkateswarlu and R. Naidu. 2016. Ex-situ remediation technologies for environmental pollutants: A critical perspective. In *Reviews of environmental contamination and toxicology volume 236*: Springer, 117-192.

Liu, Y., T. Sanguanphun, W. Yuan, J.J. Cheng and M. Meetam. 2017. The biological responses and metal phytoaccumulation of duckweed *Spirodela polyrhiza* to manganese and chromium. *Environmental Science and Pollution Research*. 24:19104-19113.

Ma, Y., M. Prasad, M. Rajkumar and H. Freitas. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. *Biotechnology advances*. 29:248-258.

Magan, N., S. Fragoeiro and C. Bastos. 2010. Environmental factors and bioremediation of xenobiotics using white rot fungi. *Mycobiology*. 38:238-248.

Majsztrik, J.C., R.T. Fernandez, P.R. Fisher, D.R. Hitchcock, J. Lea-Cox, J.S. Owen, L.R. Oki and S.A. White. 2017. Water use and treatment in container-grown specialty crop production: A review. *Water, Air, & Soil Pollution*. 228:151.

Marchand, L., M. Mench, D. Jacob and M. Otte. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. *Environmental pollution*. 158:3447-3461.

Mathew, B.B., H. Singh, V.G. Biju and N. Krishnamurthy. 2017. Classification, source, and effect of environmental pollutants and their biodegradation. *Journal of Environmental Pathology, Toxicology and Oncology*. 36:

Matozzo, V., J. Fabrello, L. Masiero, F. Ferraccioli, L. Finos, P. Pastore, I.M. Di Gangi and S. Bogialli. 2018. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel *Mytilus galloprovincialis*. *Environmental Pollution*. 233:623-632.

Mikhaylin, S. and L. Bazinet. 2016. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. *Advances in colloid and interface science*. 229:34-56.

Mitchell, R., M. Schmer, W. Anderson, V. Jin, K. Balkcom, J. Kiniry, A. Coffin and P. White. 2016. Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. *Bioenergy research*. 9:384-398.

Morillo, E. and J. Villaverde. 2017. Advanced technologies for the remediation of pesticide-contaminated soils. *Science of the Total Environment*. 586:576-597.

Newman, M.M., N. Hoilett, N. Lorenz, R.P. Dick, M.R. Liles, C. Ramsier and J.W. Kloepper. 2016. Glyphosate effects on soil rhizosphere-associated bacterial communities. *Science of the Total Environment*. 543:155-160.

Nguyen, D.B., M.T. Rose, T.J. Rose, S.G. Morris and L. Van Zwieten. 2016. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. *Soil Biology and Biochemistry*. 92:50-57.

Nicolopoulou-Stamatopoulou, P., S. Maipas, C. Kotampasi, P. Stamatis and L. Hens. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. *Frontiers in public health*. 4:148.

Obojska, A., N.G. Ternan, B. Lejczak, P. Kafarski and G. McMullan. 2002. Organophosphonate utilization by the thermophile *Geobacillus caldoxylosilyticus* t20. *Applied and Environmental Microbiology*. 68:2081- 2084.

Peñaloza-Vazquez, A., G.L. Mena, L. Herrera-Estrella and A.M. Bailey. 1995. Cloning and sequencing of the genes involved in glyphosate utilization by *Pseudomonas pseudomallei*. *Applied and Environmental Microbiology*. 61:538-543.

Pérez, D.J., E. Okada, M.L. Menone and J.L. Costa. 2017. Can an aquatic macrophyte bioaccumulate glyphosate? Development of a new method of glyphosate extraction in ludwigia peploides and watershed scale validation. *Chemosphere*. 185:975-982.

Rajkumar, M., M.N. Vara Prasad, H. Freitas and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. *Critical reviews in biotechnology*. 29:120-130.

Richmond, M.E. 2018. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. *Journal of Environmental Studies and Sciences*. 8:416-434.

Rose, M.T., T.R. Cavagnaro, C.A. Scanlan, T.J. Rose, T. Vancov, S. Kimber, I.R. Kennedy, R.S. Kookana and L. Van Zwieten. 2016. Impact of herbicides on soil biology and function. In *Advances in agronomy*: Elsevier, 133-220.

Roy, A.S., R. Baruah, M. Borah, A.K. Singh, H.P.D. Boruah, N. Saikia, M. Deka, N. Dutta and T.C. Bora. 2014. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. *International Biodeterioration & Biodegradation*. 94:79-89.

Schütte, G., M. Eckerstorfer, V. Rastelli, W. Reichenbecher, S. Restrepo-Vassalli, M. Ruohonen-Lehto, A.-G.W. Saucy and M. Mertens. 2017. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. *Environmental Sciences Europe*. 29:5.

Shanahan, P. 2004. Bioremediation. Waste containment and remediation technology, spring 2004, Massachusetts Institute of Technology: MIT Open Course Ware.

Shao, Z.-H., P.-J. He, D.-Q. Zhang and L.-M. Shao. 2009. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. *Journal of Hazardous Materials*. 164:1191-1197.

Shushkova, T., I. Ermakova, A. Sviridov and A. Leontievsky. 2012. Biodegradation of glyphosate by soil bacteria: Optimization of cultivation and the method for active biomass storage. *Microbiology*. 81:44-50.

Sidhu, G.K., S. Singh, V. Kumar, D.S. Dhanjal, S. Datta and

J. Singh. 2019. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. *Critical Reviews in Environmental Science and Technology*. 49:1135-1187.

Singh, S., V. Kumar, S. Datta, A.B. Wani, D.S. Dhanjal, R. Romero and J. Singh. 2020. Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: A review. *Environmental Chemistry Letters*. 1-40.

Singh, S., V. Kumar and J. Singh. 2019. Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in the presence of humic acid, fe (iii) and cu (ii) ions. *Journal of Environmental Chemical Engineering*. 7:103098.

Skeff, W., C. Neumann and D.E. Schulz-Bull. 2015. Glyphosate and ampa in the estuaries of the baltic sea method optimization and field study. *Marine pollution bulletin*. 100:577-585.

Sviridov, A., T. Shushkova, I. Ermakova, E. Ivanova, D. Epiktetov and A. Leontievsky. 2015. Microbial degradation of glyphosate herbicides. *Applied Biochemistry and Microbiology*. 51:188-195.

Tarazona, J.V., M. Tiramani, H. Reich, R. Pfeil, F. Istance and F. Crivellente. 2017. Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the european union assessment and its differences with iarc. *Archives of toxicology*. 91:2723-2743.

Van Bruggen, A., M. He, K. Shin, V. Mai, K. Jeong, M. Finckh and J. Morris Jr. 2018. Environmental and health effects of the herbicide glyphosate. *Science of the Total Environment*. 616:255-268.

Vandermaesen, J., B. Horemans, K. Bers, P. Vandermeeren,

S. Herrmann, A. Sekhar, P. Seuntjens and D. Springael. 2016. Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: State of the art and challenges for optimization. *Applied microbiology and biotechnology*. 100:7361-7376.

Xu, Y., G.-D. Sun, J.-H. Jin, Y. Liu, M. Luo, Z.-P. Zhong and Z.-P. Liu. 2014. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. *Journal of Hazardous Materials*. 264:430-438.

Yang, X., C.P. Bento, H. Chen, H. Zhang, S. Xue, E.H. Lwanga, P. Zomer, C.J. Ritsema and V. Geissen. 2018. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. *Environmental pollution*. 242:338-347.