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 Abstract 
Cotton (Gossypium spp.) is one of the world’s most important cash crops, 
providing natural fiber and sustaining both agricultural production and the 
textile industry. However, its productivity is frequently constrained by insect 
pests, diseases, and diverse abiotic stresses, challenges that conventional 
breeding alone has struggled to address effectively. In recent years, advances 
in genome sequencing and molecular breeding have created new opportunities 
to enhance fiber quality and stress tolerance. 
This review summarizes recent developments in genetic mapping, quantitative 
trait locus (QTL) analysis, and marker-assisted selection (MAS) for the 
identification of genes associated with key agronomic traits. The emergence of 
high-throughput sequencing technologies and genome-editing tools, 
particularly CRISPR/Cas9, has enabled precise modification of target genes 
to improve cotton performance. Moreover, the integration of high-density 
molecular markers with genomic selection approaches has shortened breeding 
cycles by facilitating early and accurate prediction of desirable traits. 
The combination of conventional breeding strategies with genomic tools has 
also helped address challenges related to polyploidy and limited genetic 
diversity, contributing to improved yield stability under stress conditions. 
Looking ahead, broader application of genome-assisted breeding, functional 
genomics, and high-throughput phenotyping will be critical for enhancing 
cotton’s adaptability to climate variability and biotic stresses. Overall, 
genomics-integrated breeding represents a powerful and sustainable approach 
to improving cotton yield, fiber quality, and resilience. 
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INTRODUCTION 
Cotton, the world's largest fibre and oilseed crop 
in the world (Shahzad et al., 2022). It grows in over 
100 countries, with an area of around 33M 
hectares. As a major cash crop, it produces around 
31% of the world's natural fibre. Furthermore, it 
makes a significant contribution to global 
production(Nabi et al., 2015). Cotton is a globally 
important natural fibre and oilseed crop with 
significant economic implications(HE et al., 
2019). 

The Gossypium genus contains approximately 
fifty species with ploidy levels of diploid (2n=26) 
and tetraploid (2n=52). Diploid species contain  
genomes A, B, C, D, E, F, G, or K. These are  
found in both tropical and subtropical regions 
and are geographically connected (Mei et al., 
2004a). Plant height ranges up to 120 cm, has a  
boll with separate branches. It is a tap- rooted plant 
with a zone depth of 90cm that may be grown 
under warm and irrigated 
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circumstances(Aydoğdu et al., n.d.). 
Despite the opportunities of cotton breeding, it is 
devastated by a high frequency of pests and insect 
attacks, weeds and herbicide resistance due to 
climatic insecurities such as drought, floods, and 
heat waves (Mollaee et al., 2019). The huge and 
complex genome of the Gossypium species is an 
assembly of high-quality genomes is challenging. 
The major goal of genome research is to utilize 
genomic tools to develop crops with great genetic 
improvement(H. Bin Zhang et al., 2008a). 
Functional genomics has accelerated cotton 
breeding to genomic breeding (Z. Yang et al., 
2020). 
QTL mapping is primarily a discovery tool that 
assists researchers in understanding the genetic 
architecture of complex traits and identifying 
possible target genes. It is not directly utilized for 
selection but rather informs other methods such as 
MAS(Pan et al., 2024). MAS is 
especially beneficial for features influenced by a few 
significant QTLs. It enables more efficient selection 
than traditional approaches, particularly for features 
that are difficult or expensive to quantify 
phenotypically. Genomic selection can forecast 
individuals' breeding value more accurately and 
sooner in their life cycle than traditional 
approaches, particularly for traits with many small-
effect QTLs(Lübberstedt et al., n.d.). 
Even though new sequencing methods have 
substantially decreased prices, complex polyploid 
genomes continue to pose a difficulty in terms of 
short-read assembly. Polyploidy creates genetic 
and gene expression novelty, but it also provides 
repetition, making sequence annotation and 
assembly more difficult. We developed an 
integrated technique for sequencing and 
assembling an allopolyploid cotton genome, 
which might be used to sequence difficult genomes 

from other polyploid crops (T. Zhang et al., 
2015). One of the key reasons for cotton cultivar 
diversity is the use of wild genetic resources, 
which causes linkage dragging of undesirable 
traits. Another factor is a lack of creative strategies 
for incorporating genetic differences from exotic 
cotton plants of the Gossypium genus into 
breeding cultivars. All these causes contributed to 
the genetic bottleneck in evolution(Iqbal et al., 
2001). This review paper discusses the potential 
method of genome sequencing that can improve 
cotton resistance through genetic mapping.  
 
Cotton Genomic Sequencing 
Cotton  has  been  domesticated  as Gossypium 
hirsutum and G. barbadense (Tetraploid species), 
G. arboreum and G. herbaceum (Diploid 
species)(Wendel & Cronn, 2003). Moreover, 95% 
of the world's cotton crop is G. hirsutum, which is 
also known as Upland cotton, with extra-long 
staple (Z. J. Chen et al., 2007). 
G. hirsutum L. is an allotetraploid, as well as 
a polyploid.Assembly of allopolyploid plant 
genomes is a difficult process due to the 
genomes’ extremely complex structure(Saski et 
al., 2017). To exploit this complexity, researchers 
applied advanced sequencing and genetic mapping 
techniques on cotton(P. Wang et al., 2024). For 
this, it is sequenced and assembled 
withtheallotetraploid  genome ofG. 
hirsutum L. using DNA from the TM-1 pure 
strain, which isa homozygous species. They 
compared the G. hirsutum L. assembly to the 
hypothesized ancestral species, G. raimondii and 
G. arboreum, to study sub-genome evolution 
and gene function, including genes involved in 
fibre biology(F. Li et al., 2015; Z. MA, 2020). 
 

 
Table no 1 
This table explains the specific and common genes located in the species: 

Species 1 
Specific 

genes 
References Species 2 Specific genes 

Common 

genes 
References 

G. 
arbor etum 

16,9 
18 

(Du et al., 
2018) 

G. 
arbor etum 

19,2 
36 

24,0 
42 

(Hua ng et al., 
2020) 
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G. 
raim ondii 

25,9 
64 

(Pate rson et 
al., 

2012) 

G. 
raim ondii 

29,2 
02 

11,5 
41 

(Uda ll et al., 
2019) 

 

This table lists Gossypium species as well as the 
specific genes found in each. In the context of 
species 2, common genes were given alongside 
specific genes. 
 
Genetic Mapping using Molecular Markers 
Genetic mapping identifies the gene and markers 
with specific traits to improve breeding. In cotton 
breeding, markers are the main source to locate 
desirable genes(Malik et al., 2014). In breeding, 
these markers are highly valuable in detecting, 
characterizing, and identifying genetic variants, as 
well as removing linkage drag in breeding 
programs to find desirable features that are 
difficult to measure by visual observation(Kalia et 
al., 2011). SNPs are mostly and widely used 
molecular markers with a high level of  

 
polymorphism. SNPs are found in coding and 
non-coding regions of the genome, which 
allows detection variation 
(Agarwal et al., 2008). In the past decade, an 
extensive collection of QTL- mapping tools has 
been introduced for incorporating a variety of 
methodologies to locate genes. These methods are 
based on concepts of parametric and 
nonparametric linkage analysis, as well as 
innovative methodologies utilizing the study of 
dispersion components association analysis and 
multipoint mapping(JIA et al., 2014; Liu & Muse, 
2005; Y.-M. Zhang & Gai, 2009; Z.-S. Zhang et al., 
2009). 
 
 
 

 

 
Figure 1 

 
These are the markers widely used in genomics 
(H. Bin Zhang et al., 2008b) 
 
AFLP: Amplified Fragment Length 

Polymorphism  
 
SSR: Simple Sequence Repeats 
SRAP: Sequence-Related Amplified Polymorphism 

G. 
barb aden se 

6,50 
4 

(Z. J. 
Chen et al., 
2020) 

G. 
barb aden se 

3,24 
0 

68,0 
57 

(M. 
Wan g et al., 
2019) 

G. 
barb aden se 

27,3 
04 

(Hu et al., 2019) G. 
barb aden se 

23,5 
34 

47,7 
63 

(J. 
Wan g et al., 
2019) 

G. 
barb aden 
se 

25,0 
93 

(Hu et al., 2019) G. 
barb aden 
se 

24,5 
73 

49,9 
88 

(Z. J. 
Chen et al., 
2020) 
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RFLP: Restriction Fragment Length 
Polymorphism 
This indicates the uses of different genetic 
markers along with their usage over different 
amplifications. 
Genetic Mapping using QTL Mapping 
The cotton QTL study was conducted on 392 
genetic loci, comprising 333 AFLP, 
47 SSR, and 12 RFLP(X.-Y. Wang et al., 2012). A 
genetic map of cotton was constructed for QTL 
using composite interval mapping and permutation 
tests. This study discovered that seven QTLs for six 
fibre-related traits, of which five are found on the A-
subgenome chromosomes, are responsible for fibre 
traits(Syed & Gao, 2010). Prior study also found 
that QTLs in both the A and D sub-genomes are 
responsible for fibre-related phenotypes, which are 
influenced by homoeologous genes(Razzaq et al., 
2022). QTL clusters on certain chromosomes are 
likely to contribute to the high phenotypic diversity 
in fibre-related characteristics(Mei et al., 2004b; Tan 
et al., 2018). 
Another study uses the high-density cotton 
molecular marker linkage map based on PCR 
(Kushanov et al., 2021). An F2 population of a 
hybrid between "Handan208" and "Pima90" 
examined the use of SSR, sequence-related 
amplified polymorphism, RAPD , and 
retrotransposon microsatellite amplified 
polymorphism(D. He et al., 2007). Fifty-two distinct 
QTLs were identified for lint index, seed index, 

lint yield, seed cotton yield, number of seeds 
per boll, fibre strength, fibre length, and 
micronaire. The current map and QTL analysis 
are a useful tool for breeders to transfer 
advantageous traits from G. barbadense to the 
most farmed species, G. hirsutum(D.-H. He et al., 
2007). Furthermore, gene expression analysis 
using RNAseq data identified 40 possible genes, 
including 23 stable and 17 novel genes. These 
genes are transcriptionally active at different 
stages of fibre, ovule, and seed development. 
These studies have revealed a rich tapestry of 
genetic elements, including SNPs, 
QTLs,and candidate genes, and have a 
high potential for increasing fibre yield in 
future breeding 
initiatives for cotton(Joshi et al., 2023).  

Genetic Mapping using Marker-Assisted Breeding 
Molecular markers provided a significant 
opportunity in increasing the precision of crop 
development operations through MAS breeding 
technology(Collard & Mackill, 2008a). MAS 
technology enables selection at any stage of plant 
growth and development. In short, the 
development of MAS technology has enabled 
advanced selection resulting in genomics, which 
has since become an essential component of 
agricultural science(Kushanov et al., 2021b). 
Figure 2 
(Kushanov et al., 2021c)This figure implies the 
types of markers, including morphological and 
molecular markers. 

 
 

This figure represents the phylogenetic tree of molecular markers at the morphological and 
                                                 molecular levels. 

 
Genetic Mapping for improved fibre quality 

Cotton is the leading natural fibre crop because of 
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its increasing demand in the agricultural market.  
 
 
Fibre length, consistency, strength, elongation, and 
micronaire value are some of the most common fibre 
quality characteristics (Wendel et al., 2010). Fibre 
length and strength both have an impact on yarn 
quality. In the textile industry, fibre strength is an 
important aspect. The micronaire value has a direct 
effect on fibre processing(Ijaz et al., 2019; Rodgers et 
al., 2017; X. Yang et al., 2016). 
Yield is a complex feature; the lint fraction is the 
percentage of lint extracted from seed cotton that is 
positively connected with yield. It has given an 
indirect and cost-effective method of breeding for 
increased yield potential, resulting in around 10% 
increases over the last 60 years. However, lint 
fraction can be inversely associated with seed size, 
thereby lowering seedling vigour (Constable et al., 
2015). 
For improved fibre development, Marker-assisted 
breeding technology has gained importance because 
it can locate specific genes with greater 
efficiency(Tan et al., 2015). Recent advances in 
molecular breeding have enabled the combination 
of traditional breeding and biotechnology 
procedures with the desired output. However, 
integration of cotton traditional breeding with 
marker-assisted breeding helped in accelerating 
breeding with potential results(Morales-Aranibar et 
al., 2024). Recent investigations revealed that the  
paternal BC population investigates the genetic 
mechanism of fibre quality, detecting 19 and 8 
QTLs in the BC/P and 
populations shared three QTLs for fibre strength 
and elongation: qFS-Chr21-2, qFE- Chr2-3, and 
qFE-Chr3-1. This demonstrates isolating novel elite 
alleles of the male father for fibre quality(L. MA et 
al., 2020). 
Another study identified ninety-one QTL loci 
associated with fibre quality indicators in a 
BC5S5 upland population of 107 lines. Their 
PEV ranged from 4.53% to 
20.92. Among them, the favourable alleles of  
QTLs  qFS-A02-1  and  qSCI-A02-1 
discovered in stable detection were all from 
G. tomentosum, with PVE ranging from 9.8-

16.71% and 14.78-20.92%, respectively. This shows 
that the G. tomentosum significantly improved the 
fibre quality in upland cotton. Fourteen genes were 
discovered in the candidate interval, 
includingGhir_A02G012730, Ghir_A02G012790, 
and Ghir_A02G012830, which are involved in 
cellulose and cell wall production and have a 
reasonably high expression during fibre formation 
(Chang et al., 2023). Furthermore, Crisper/CAS 
can also be used to validate the results and alleles. 
Cotton fibre quality has been successfully improved 
through the introduction of foreign genes pertinent 
to fibre manufacturing. However, more research is 
needed in addition to the advanced methodologies 
previously stated(Ahmed et al., 2020). Discovering 
and integrating more distant fibre-related genes into 
cotton can increase fibre characteristics even 
further. Understanding the molecular foundation 
of diverse fibre creation mechanisms necessitates 
additional research to improve 
fibre features(Baghyalakshmi et al., 2024). 
 
Genetic Mapping for stress resistance 
Extensive research has been conducted in cotton 
production and quality over the last few years 
using traditional breeding. However, this has 
increased susceptibility 
BC/M populations, respectively. Both BC against 
stresses(Maqbool et al., 2010). Stress 
tolerance is influenced by genetic as well as 
environmental factors, which are lacking in 
conventional breeding due to genetic diversity(H. 
Sun et al., 2019). Abiotic stress typically includes 
drought, heat, salinity and cold stress. In addition 
to enhancing yield, quality, and resistance to diseases 
and insects, it also pays more attention to tolerance 
to stresses and efficient use of soil 
resources(Abdelraheem et al., 2021; Diouf et al., 
2017). Besides abiotic stress, cotton is highly 
susceptible to Cotton leaf curl virus, which is a biotic 
stress. 
To address these issues, the meta- analysis program 
Biomercator was used by researchers to examine 661 
stress resistance QTLs. This included QTL for 
drought tolerance in a greenhouse and field 
conditions, salt tolerance in a greenhouse, 
resistance to Verticillium wilt, resistance to 
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Fusarium wilt, and resistance to uniform 
nematodes and root-
knot nematodes(Abdelraheem et al., 2017). 
Recent breakthroughs in functional genomics, 
genetic and analytical methods, particularly 
complete gene expression profiling of cotton fibre 
cells, along with the availability of a sequenced 
genome, have opened new avenues for improving 
cotton fibre properties through genetic 
manipulation. Several fibre-specific genes 
involved in fibre cell initiation, elongation, or cell 
wall biosynthesis have been identified as 
possibilities for genetic manipulation to improve 
fibre yield and/or quality(Walford et al., 2011). 
Another study on the investigation on drought stress 
uses a total of 1,116 SNPs and 782 SSRs. In which 
nineteen QTLs were found in one chromosome 3, 
4, 5, 7, 8, 12, 
13, 15, and 26 for plant morphological features. 
This mapping approach identified one QTL 
hotspot on chromosome 8 using public domain 
mapping data. These findings  suggest  candidate  
alleles  for 
drought tolerance in upland cotton, which can be 
used to produce cotton varieties with stress 
resilience through marker- assisted selection (MAS) 
breeding programs(Shukla et al., 2021). 
In agriculture, biotic factors are a major cause of 
large output losses up to 84% for insects and up to 
30% for pathogens(Jans et al., 2021). At the same 
time, attempts to reduce infestations include 
increasing the internal defensive mechanisms of 
plants or introducing pathogen-targeted constructs 
into the genome(Kamburova & Abdurakhmonov, 
2018). Classical breeding methods increase the 
plant's internal defence mechanisms and use cotton 
germplasm reserves to produce new resistant 
varieties over time, whereas MAS and QTL 
mapping have been widely used in the 
development of cotton varieties resistant to 
Verticillium and Fusarium wilt. More than 400 
QTL indicating resistance to both types of wilt have 
been found(Kamburova & Abdurakhmonov, 2018; 
C. Wang et al., 2018a; J. Zhang et al., 2014). These 
results were achieved by mapping chromosome-
substituted and RIL populations using different 
markers and GWAS. The same meta-analysis 

showed 74 QTLs for nematode 
resistance(Kushanov et al., 2021d). Thus, 71 QTLs 
relate to resistance to root-knot nematode, while 
three remain associated with resistance to reniform 
nematodes. Furthermore, this study found two 
QTLs for resistance to Xanthomonascampestrispv. 
Malvacearum(C. Wang et al., 2018b). CLcV is one 
of the most devastating biotic stresses, but we used 
quantitative trait loci (QTL) mapping in four crosses 
with different sources of resistance to identify 
single-nucleotide polymorphism (SNP) markers 
associated with the resistance trait, allowing for the 
development of varieties without the need for field 
screening every 
generation. To aid in the analysis of many 
populations, a new publicly available R/Shiny App 
was built to simplify genetic mapping utilizing SNP 
arrays as well as give an easy method to convert and 
deposit genetic data into the CottonGen 
database(Schoonmaker et al., 2023). 
In comparison to the advancement in cotton 
resistance is largely sluggish, and there is still a gap 
in resistance breeding. Future study will be 
undertaken based on the investigation and 
evaluation of good resources, the major effect of 
resistance QTL, and the cloning of excellent key 
resistance genes, employing marker- assisted 
selection (MAS) and transgenic technology to 
polymerize resistance genes(Saud & Wang, 2022). 
 
Future Direction 
Genome Editing through CRISPR/Cas 
Genome editing plays a crucial role in functional 
gene studies and crop improvement. The 
CRISPR/Cas9 uses single guide RNA molecules 
to control double-strand breaks in the genome 
sequence, has the potential to revolutionize 
agriculture (Gao et al., 2017a). The 
CRISPR/Cas9 technique uses a guide RNA 
(gRNA) to lead the Cas9 nuclease to a specific 
genomic sequence, causing a double-strand break 
(DSB). This break can then be repaired using the 
cell's natural repair mechanisms, non-
homologous end joining (NHEJ) or homology-
directed repair (HDR), resulting in specific gene 
changes. The capacity to construct gRNAs to 
target almost any sequence in the genome has 
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made CRISPR/Cas9 a very versatile tool for 
diverse genetic changes in cotton (Thangaraj et al., 
2025). 
The successful use of the CRISPR/Cas9 system for 
crop improvement or functional investigation can 
generate transformed mutants and undertake 
phenotypic characterization  of  homozygous  
stable 
contained in the sgRNA is a critical component 
influencing the overall mutagenesis efficacy of the 
CRISPR/Cas9 system(Ma et al., 2015). In cotton, 
CRISPR/Cas9 has been used to improve a variety 
of agronomically significant properties. For 
example, researchers employed this technology to 
improve fibre quality by targeting genes involved 
in fibre growth, resulting in longer and stronger 
fibres (C. Li et al., 2017). CRISPR/Cas9 has also 
been used to improve resistance to biotic stressors 
like pests and diseases by removing susceptibility 
genes or increasing defence-related genes(Gao et 
al., 2017b). Furthermore, CRISPR/Cas9 has 
been used to improve abiotic stress tolerance, such 
as drought and salinity, by editing genes that 
regulate stress responses, increasing cotton's 
endurance to harsh environmental conditions(X. 
Chen et al., 2017). 
The successful implementation of the 
CRISPR/Cas9 system for crop improvement or 
functional analysis is dependent on the creation 
of stably transformed mutants in order to 
characterization of homozygous stable 
mutants. The sequence of the target site 
contained in the sgRNA is an important factor 
affecting the overall mutagenic efficiency of the 
CRISPR/Cas9 system, as different sgRNAs can 
result in very different efficiencies when targeting 
the same gene (Ma et al., 2016). 
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Figure 3 

 
mutants. The sequence of the target site 
(Khan et al., 2023) This diagram depicts the 
three gene- editing technologies. 
CRISPR/Cas9 is the simplest andquickest to 
design and construct, whereas ZFNs are the 
most complicated and expensive. 
CRISPR/Cas9, on the other hand, works as a 
single unit.  
 
High-Throughput Markers 
The high-quality phenotypic data are crucial for 
enhanced cotton yield. This study reveals that 
HTP offers a lot of potential for data collection 
and analysis while assessing phenotypic traits in 
cotton in the form of cheaper input costs and 
resources(Bolouri et al., 2024). Imaging and 
sensor technologies based on spectral, thermal, 
fluorescence, and 3D sensors are the most 
useful and powerful tools for evaluating crop 
characteristics, tracking crop growth and 
development, and assessing cotton health. With 
the emergence of HTP technologies, several 
ground and aerial-based platform systems for 
phenotypic and agronomic research in cotton 
have been built(Pabuayon et al., 2019). 
The high-throughput phenotyping 
technology developed in the field 
reconstructed precise 3D surface models. 
Multiple morphological parameters at the 
plot level, such as plant height, projected 
canopy area, and plant volume, were retrieved 
concurrently. Because of its relatively large 
data collection and processing capacity, the 
device aids in the repetitive scanning of the 
field. The measured morphological features 
had the highest correlation with eventual 
yield between 67 and 109 DAP. Further 

research will focus on using additional sensor 
data to derive more phenotypic features from 
the 3D point cloud. Although this method 
was only tested on cotton plants, it has proven 
to be a successful application(S. Sun et al., 
2018). 
 
Genomic Breeding 
Cotton genomic sequencing has made 
significant advancements in recent years, 
with multiple high-quality reference genomes 
for G. hirsutum and G. barbadense. This 
research has enabled the researchers to 
identify crucial genes involved in fibre 
growth, insect resistance, and stress tolerance 
in cotton(Collard & Mackill, 2008b). 
Furthermore, genomic approaches such as 
molecular markers and gene editing 
technologies are becoming more common for 
accurate cotton breeding. However, in the 
face of several challenges, including ongoing 
global growth, complex environmental 
conditions, and decreasing genetic gain 
effects of breeding new cotton varieties, the 
cotton research community must urgently 
rethink and design the future of cotton 
breeding(Kun et al., 2025). Also, genomic 
selection, another tool for estimating GEBV, 
has proven application in testing individuals 
because it is not dependent on the late 
measurement phenotype, which significantly 
reduces the generation interval. It estimates 
GEBV using marker information from the 
entire genome, which considerably enhances 
its accuracy. Furthermore, genomic selection 
can estimate some features that are difficult 
to quantify phenotypically (Zhai, 2023). 
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Digital Technologies 
Cotton must continue its fibre market 
leadership as the most abundant and natural 
fibre of choice for a wide range of industrial 
and commercial applications. To do this, 
cotton production, which has traditionally 
been input-intensive and has an indelible 
negative environmental impact, must be 
continuously refined to use the fewest inputs 
while optimizing yield, fibre quality, and 
profit using existing and developing 
technology. To fully benefit from new 
advanced techniques and technologies as 
they are developed globally, these enabling 
tools 
 (such as variety breeding, improved irrigation
 systems/biodegradable 
mulching, autonomous aerial systems, 
computer vision/agricultural remote sensing 
techniques, robotic harvesters and 
multipurpose platforms, HDPT, and 
chemical topping) for cotton agronomy 
optimization must be continuously improved 
upon. Some of these tools have been 
thoroughly studied and commercialized in 
the global cotton industry (Adeleke, 2024). 
 
Conclusion 
Cotton is an important cash crop which plays 
a pivotal role in textile production, and 
agriculture is subject to many external factors. 
Changing climatic conditions worsen the 
situation of cotton development. Both biotic 
and abiotic stress negatively affected the 
increasing demand for high-quality cotton. 
Traditional breeding methods have less 
genetic diversity, thus leading to a decline in 
cotton innovation. Integration of marker-
assisted breeding and genetic mapping 
techniques can revolutionize cotton breeding 
by identifying QTLs which can improve 
desired traits. Recent studies have also found 
genes and markers which can directly locate 
the desired trait. However, integrating 
conventional breeding through genome 
editing, high-throughput markers, and 
molecular breeding designs, many of the 
constraints of traditional breeding may be 
overcome for the new era of cotton assisted 
with cotton. 
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