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INTRODUCTION

Abstract

Cotton (Gossypium spp.) is one of the world’s most important cash crops,
providing natural fiber and sustaining both agricultural production and the
textile industry. Howewer, its productivity is frequently constrained by insect
pests, diseases, and diverse abiotic stresses, challenges that conventional
breeding alone has struggled to address effectively. In recent years, advances
in genome sequencing and molecular breeding have created new opportunities
to enhance fiber quality and stress tolerance.

This review summarizes recent developments in genetic mapping, quantitative
trait locus (QTL) analysis, and marker-assisted selection (MAS) for the
identification of genes associated with key agronomic traits. The emergence of
high-throughput  sequencing technologies and genome-editing tools,
particularly CRISPR/Cas9, has enabled precise modification of target genes
to improve cotton performance. Moreover, the integration of high-density
molecular markers with genomic selection approaches has shortened breeding
cycles by facilitating early and accurate prediction of desirable traits.

The combination of conventional breeding strategies with genomic tools has
also helped address challenges related to polyploidy and limited genetic
diversity, contributing to improved yield stability under stress conditions.
Looking ahead, broader application of genome-assisted breeding, functional
genomics, and high-throughput phenotyping will be critical for enhancing
cotton’s adaptability to climate wvariability and biotic stresses. Quwerall,
genomics-integrated breeding represents a powerful and sustainable approach
to improving cotton vield, fiber quality, and resilience.

Cotton, the world's largest fibre and oilseed crop
in the world (Shahzad et al., 2022). It grows in over
100 countries, with an area of around 33M
hectares. As a major cash crop, it produces around
31% of the world's natural fibre. Furthermore, it
makes a significant contribution to global
production(Nabi et al., 2015). Cotton is a globally
important natural fibre and oilseed crop with
significant economic implications(HE et al.,

2019).

The Gossypium genus contains approximately
fifty species with ploidy levels of diploid (2n=26)
and tetraploid (2n=52). Diploid species contain
genomes A, B, C, D, E, F, G, or K. These are
found in both tropical and subtropical regions
and are geographically connected (Mei et al.,
2004a). Plant height ranges up to 120 cm, has a
boll with separate branches. It is a tap- rooted plant
with a zone depth of 90cm that may be grown

under warm and irrigated
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circumstances(Aydogdu et al., n.d.).

Despite the opportunities of cotton breeding, it is
devastated by a high frequency of pests and insect
attacks, weeds and herbicide resistance due to
climatic insecurities such as drought, floods, and
heat waves (Mollaee et al., 2019). The huge and
complex genome of the Gossypium species is an
assembly of high-quality genomes is challenging.
The major goal of genome research is to utilize
genomic tools to develop crops with great genetic
improvement(H. Bin Zhang et al., 2008a).
Functional genomics has accelerated cotton
breeding to genomic breeding (Z. Yang et al.,
2020).

QTL mapping is primarily a discovery tool that
assists researchers in understanding the genetic
architecture of complex traits and identifying
possible target genes. It is not directly utilized for
selection but rather informs other methods such as
MAS(Pan et al., 2024). MAS is

especially beneficial for features influenced by a few
significant QTLs. It enables more efficient selection
than traditional approaches, particularly for features
that are difficult or expensive to quantify
phenotypically. Genomic selection can forecast
individuals' breeding value more accurately and
sooner in their life cycle than traditional
approaches, particularly for traits with many small-
effect QTLs(Luibberstedt et al., n.d.).

Even though new sequencing methods have
substantially decreased prices, complex polyploid
genomes continue to pose a difficulty in terms of
short-read assembly. Polyploidy creates genetic
and gene expression novelty, but it also provides
repetition, making sequence annotation and
assembly more difficult. We developed an
integrated technique for sequencing and
assembling an allopolyploid cotton genome,
which might be used to sequence difficult genomes

from other polyploid crops (T. Zhang et al.,
2015). One of the key reasons for cotton cultivar
diversity is the use of wild genetic resources,
which causes linkage dragging of undesirable
traits. Another factor is a lack of creative strategies
for incorporating genetic differences from exotic
cotton plants of the Gossypium genus into
breeding cultivars. All these causes contributed to
the genetic bottleneck in evolution(Igbal et al.,
2001). This review paper discusses the potential
method of genome sequencing that can improve
cotton resistance through genetic mapping.

Cotton Genomic Sequencing

Cotton has been domesticated as Gossypium
hirsutum and G. barbadense (Tetraploid species),
G. arboreum and G. herbaceum (Diploid
species)(Wendel & Cronn, 2003). Moreover, 95%
of the world's cotton crop is G. hirsutum, which is
also known as Upland cotton, with extra-long
staple (Z. J. Chen et al., 2007).

G. hirsutum L. is an allotetraploid, as well as
a polyploid.Assembly of allopolyploid plant
genomes is a difficult process due to the
genomes’ extremely complex structure(Saski et
al., 2017). To exploit this complexity, researchers
applied advanced sequencing and genetic mapping
techniques on cotton(P. Wang et al., 2024). For
this, it is sequenced and  assembled
withtheallotetraploid ~ genome of G.
hirsutum L. using DNA from the TM-1 pure
strain, which isa homozygous species. They
compared the G. hirsutum L. assembly to the
hypothesized ancestral species, G. raimondii and
G. arboreum, to study sub-genome evolution
and gene function, including genes involved in

fibre biology(F. Li et al., 2015; Z. MA, 2020).

Table no 1
This table explains the specific and common genes located in the species:
Specifi C
Species 1 pecttic References Species 2 Specific genes ommon References
genes genes
G. 16,9 (Du etal, . 19,2 24,0 (Huangetal,
arbor etum 18 2018) arbor etum 36 42 2020)
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G. 259 | (Pate roon et G. 292 11,5 | (Udalletal,
raim ondii 64 23 1' 2) raim ondii 02 41 2019)

G. 6,50 (Z. J. G. 3,24 68,0 (M.

barb aden se 4 Chen et al., |barbadense 0 57 Wang etal,
2020) 2019)

G. 27,3 (Hu etal, 2019) |G. 23,5 47,7 J.

barb aden se 04 barb aden se 34 63 Wang etal,

2019)

G. 25,0 (Hu etal, 2019) |G. 24,5 49,9 (Z. ].

barb aden 93 barb aden 73 388 Chen et al,,

se se 2020)

This table lists Gossypium species as well as the
specific genes found in each. In the context of
species 2, common genes were given alongside
specific genes.

Genetic Mapping using Molecular Markers

Genetic mapping identifies the gene and markers
with specific traits to improve breeding. In cotton
breeding, markers are the main source to locate
desirable genes(Malik et al., 2014). In breeding,
these markers are highly valuable in detecting,
characterizing, and identifying genetic variants, as
well as removing linkage drag in breeding
programs to find desirable features that are
difficult to measure by visual observation(Kalia et
al., 2011). SNPs are mostly and widely used

molecular markers with a high level of

polymorphism. SNPs are found in coding and
non-coding regions of the genome, which
allows detection variation

(Agarwal et al., 2008). In the past decade, an
extensive collection of QTL- mapping tools has
been introduced for incorporating a variety of
methodologies to locate genes. These methods are
based concepts of parametric and
nonparametric linkage
innovative methodologies utilizing the study of

on
analysis, as well as
dispersion components association analysis and
multipoint mapping(JIA et al., 2014; Liu & Muse,
2005; Y.-M. Zhang & Gai, 2009; Z.-S. Zhang et al.,
2009).

Genetic Markers
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Figure 1

These are the markers widely used in genomics Polymorphism

(H. Bin Zhang et al., 2008b)

AFLP: Amplified Fragment Length

SSR: Simple Sequence Repeats
SRAP: Sequence-Related Amplified Polymorphism

https://jaisj.org

| Marukh & Umer, 2025 |

Page 3


https://jaisj.org/

Journal of Agricultural Innovation and Sustainability

ISSN: 3106-7921 |3106-7913
Volume 2, Issue 3, 2025

RFLP: Restriction Fragment  Length
Polymorphism

This indicates the uses of different genetic
markers along with their usage over different
amplifications.

Genetic Mapping using QTL Mapping

The cotton QTL study was conducted on 392
genetic loci, comprising 333 AFLP,

47 SSR, and 12 RFLP(X.-Y. Wang et al., 2012). A
genetic map of cotton was constructed for QTL
using composite interval mapping and permutation
tests. This study discovered that seven QTLs for six
fibre-related traits, of which five are found on the A-
subgenome chromosomes, are responsible for fibre
traits(Syed & Gao, 2010). Prior study also found
that QTLs in both the A and D sub-genomes are
responsible for fibre-related phenotypes, which are
influenced by homoeologous genes(Razzaq et al.,
2022). QTL clusters on certain chromosomes are
likely to contribute to the high phenotypic diversity
in fibre-related characteristics(Mei et al., 2004b; Tan
etal., 2018).

Another study uses the high-density cotton
molecular marker linkage map based on PCR
(Kushanov et al., 2021). An F2 population of a
hybrid between "Handan208" and "Pima90"
examined the use of SSR, sequence-related
amplified polymorphism, RAPD , and
retrotransposon microsatellite  amplified
polymorphism(D. He et al., 2007). Fifty-two distinct
QTLs were identified for lint index, seed index,

lint yield, seed cotton yield, number of seeds
per boll, fibre strength, fibre length, and
micronaire. The current map and QTL analysis
are a useful tool for breeders to transfer
advantageous traits from G. barbadense to the
most farmed species, G. hirsutum(D.-H. He et al.,
2007). Furthermore, gene expression analysis
using RNAseq data identified 40 possible genes,
including 23 stable and 17 novel genes. These
genes are transcriptionally active at different
stages of fibre, ovule, and seed development.
These studies have revealed a rich tapestry of
genetic elements, including SNPs,
QTLs,and candidate genes, and have a
high potential for increasing fibre yield in
future breeding

initiatives for cotton(Joshi et al., 2023).

Genetic Mapping using Marker-Assisted Breeding
Molecular markers provided a significant
opportunity in increasing the precision of crop
development operations through MAS breeding
technology(Collard & Mackill, 2008a). MAS
technology enables selection at any stage of plant
growth and development. In short, the
development of MAS technology has enabled
advanced selection resulting in genomics, which
has since become an essential component of
agricultural science(Kushanov et al., 2021b).
Figure 2

(Kushanov et al., 2021c)This figure implies the
types of markers, including morphological and
molecular markers.

nae REMAR ssap

This figure represents the phylogenetic tree of molecular markers at the morphological and

molecular levels.

Genetic Mapping for improved fibre quality
Cotton is the leading natural fibre crop because of
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its increasing demand in the agricultural market.

Fibre length, consistency, strength, elongation, and
micronaire value are some of the most common fibre
quality characteristics (Wendel et al., 2010). Fibre
length and strength both have an impact on yarn
quality. In the textile industry, fibre strength is an
important aspect. The micronaire value has a direct
effect on fibre processing(ljaz et al., 2019; Rodgers et
al., 2017; X. Yang et al., 2016).

Yield is a complex feature; the lint fraction is the
percentage of lint extracted from seed cotton that is
positively connected with yield. It has given an
indirect and cost-effective method of breeding for
increased yield potential, resulting in around 10%
increases over the last 60 years. However, lint
fraction can be inversely associated with seed size,
thereby lowering seedling vigour (Constable et al.,
2015).

For improved fibre development, Marker-assisted
breeding technology has gained importance because
it can locate specific genes with greater
efficiency(Tan et al., 2015). Recent advances in
molecular breeding have enabled the combination
of traditional breeding and biotechnology
procedures with the desired output. However,
integration of cotton traditional breeding with
marker-assisted breeding helped in accelerating
breeding with potential results(Morales-Aranibar et
al., 2024). Recent investigations revealed that the
paternal BC population investigates the genetic
mechanism of fibre quality, detecting 19 and 8
QTLs in the BC/P and

populations shared three QTLs for fibre strength
and elongation: qFS-Chr21-2, qFE- Chr2-3, and
qFE-Chr3-1. This demonstrates isolating novel elite
alleles of the male father for fibre quality(L. MA et
al., 2020).

Another study identified ninety-one QTL loci
associated with fibre quality indicators in a
BC5S5 upland population of 107 lines. Their
PEV ranged from 4.53% to

20.92. Among them, the favourable alleles of
QTLs qFS-A02-1 and ¢SCI-A02-1
discovered in stable detection were all from

G. tomentosum, with PVE ranging from 9.8-

16.71% and 14.78-20.92%, respectively. This shows
that the G. tomentosum significantly improved the
fibre quality in upland cotton. Fourteen genes were
discovered in  the candidate interval,
includingGhir_A02G012730, Ghir_A02G012790,
and Ghir A02G012830, which are involved in
cellulose and cell wall production and have a
reasonably high expression during fibre formation
(Chang et al., 2023). Furthermore, Crisper/CAS
can also be used to validate the results and alleles.
Cotton fibre quality has been successfully improved
through the introduction of foreign genes pertinent
to fibre manufacturing. However, more research is
needed in addition to the advanced methodologies
previously stated(Ahmed et al., 2020). Discovering
and integrating more distant fibre-related genes into
cotton can increase fibre characteristics even
further. Understanding the molecular foundation
of diverse fibre creation mechanisms necessitates
additional research to improve

fibre features(Baghyalakshmi et al., 2024).

Genetic Mapping for stress resistance

Extensive research has been conducted in cotton
production and quality over the last few years
using traditional breeding. However, this has
increased susceptibility

BC/M populations, respectively. Both BC against
stresses(Magbool et al., 2010). Stress

tolerance is influenced by genetic as well as
environmental factors, which are lacking in
conventional breeding due to genetic diversity(H.
Sun et al., 2019). Abiotic stress typically includes
drought, heat, salinity and cold stress. In addition
to enhancing yield, quality, and resistance to diseases
and insects, it also pays more attention to tolerance
to stresses and efficient use of soil
resources(Abdelraheem et al., 2021; Diouf et al,,
2017). Besides abiotic stress, cotton is highly
susceptible to Cotton leaf curl virus, which is a biotic
stress.

To address these issues, the meta- analysis program
Biomercator was used by researchers to examine 661
stress resistance QTLs. This included QTL for
drought tolerance in a greenhouse and field
conditions, salt tolerance in a greenhouse,
resistance to Verticillium wilt, resistance to
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Fusarium wilt, and resistance to uniform
nematodes and root-
knot nematodes(Abdelraheem et al., 2017).
Recent breakthroughs in functional genomics,
genetic and analytical methods, particularly
complete gene expression profiling of cotton fibre
cells, along with the availability of a sequenced
genome, have opened new avenues for improving
cotton fibre  properties through genetic
manipulation.  Several fibre-specific  genes
involved in fibre cell initiation, elongation, or cell
wall biosynthesis have been identified as
possibilities for genetic manipulation to improve
fibre yield and/or quality(Walford et al., 2011).
Another study on the investigation on drought stress
uses a total of 1,116 SNPs and 782 SSRs. In which
nineteen QTLs were found in one chromosome 3,
4, 5,1, 8, 12,

13, 15, and 26 for plant morphological features.
This mapping approach identified one QTL
hotspot on chromosome 8 using public domain
mapping data. These findings suggest candidate
alleles for

drought tolerance in upland cotton, which can be
used to produce cotton varieties with stress
resilience through marker- assisted selection (MAS)
breeding programs(Shukla et al., 2021).

In agriculture, biotic factors are a major cause of
large output losses up to 84% for insects and up to
30% for pathogens(Jans et al., 2021). At the same
time, attempts to reduce infestations include
increasing the internal defensive mechanisms of
plants or introducing pathogen-targeted constructs
into the genome(Kamburova & Abdurakhmonov,
2018). Classical breeding methods increase the
plant's internal defence mechanisms and use cotton
germplasm reserves to produce new resistant
varieties over time, whereas MAS and QTL
mapping have been widely wused in the
development of cotton varieties resistant to
Verticillium and Fusarium wilt. More than 400
QTL indicating resistance to both types of wilt have
been found(Kamburova & Abdurakhmonov, 2018;
C. Wang et al., 2018a; J. Zhang et al., 2014). These
results were achieved by mapping chromosome-
substituted and RIL populations using different
markers and GWAS. The same meta-analysis

showed 74 QTLs for nematode

resistance(Kushanov et al., 2021d). Thus, 71 QTLs

relate to resistance to root-knot nematode, while

three remain associated with resistance to reniform

nematodes. Furthermore, this study found two

QTLs for resistance to Xanthomonascampestrispv.

Malvacearum(C. Wang et al., 2018b). CLcV is one

of the most devastating biotic stresses, but we used

quantitative trait loci (QTL) mapping in four crosses

with different sources of resistance to identify

singlenucleotide polymorphism (SNP) markers

associated with the resistance trait, allowing for the

development of varieties without the need for field

screening every

generation. To aid in the analysis of many
populations, a new publicly available R/Shiny App
was built to simplify genetic mapping utilizing SNP
arrays as well as give an easy method to convert and
deposit  genetic data into the CottonGen
database(Schoonmaker et al., 2023).

In comparison to the advancement in cotton
resistance is largely sluggish, and there is still a gap
in resistance breeding. Future study will be
undertaken based on the investigation and
evaluation of good resources, the major effect of
resistance QTL, and the cloning of excellent key
resistance genes, employing marker- assisted
selection (MAS) and transgenic technology to
polymerize resistance genes(Saud & Wang, 2022).

Future Direction

Genome Editing through CRISPR/Cas

Genome editing plays a crucial role in functional
gene studies and crop improvement. The
CRISPR/Cas9 uses single guide RNA molecules
to control double-strand breaks in the genome
sequence, has the potential to revolutionize
agriculture (Gao et al, 2017a). The
CRISPR/Cas9 technique uses a guide RNA
(gRNA) to lead the Cas9 nuclease to a specific
genomic sequence, causing a double-strand break
(DSB). This break can then be repaired using the
cell's natural repair mechanisms, non-
homologous end joining (NHE]) or homology-
directed repair (HDR), resulting in specific gene
changes. The capacity to construct gRNAs to
target almost any sequence in the genome has
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made CRISPR/Cas9 a very versatile tool for
diverse genetic changes in cotton (Thangaraj et al.,
2025).

The successful use of the CRISPR/Cas9 system for
crop improvement or functional investigation can
generate transformed mutants and undertake
phenotypic characterization of  homozygous
stable

contained in the sgRNA is a critical component
influencing the overall mutagenesis efficacy of the
CRISPR/Cas9 system(Ma et al., 2015). In cotton,
CRISPR/Cas9 has been used to improve a variety
of agronomically significant properties. For
example, researchers employed this technology to
improve fibre quality by targeting genes involved
in fibre growth, resulting in longer and stronger
fibres (C. Li et al., 2017). CRISPR/Cas9 has also
been used to improve resistance to biotic stressors
like pests and diseases by removing susceptibility
genes or increasing defence-related genes(Gao et
al.,, 2017b). Furthermore, CRISPR/Cas9 has
been used to improve abiotic stress tolerance, such
as drought and salinity, by editing genes that
regulate stress responses, increasing cotton's
endurance to harsh environmental conditions(X.
Chen et al., 2017).

The successful implementation of the
CRISPR/Cas9 system for crop improvement or
functional analysis is dependent on the creation
of stably transformed mutants in order to
characterization of homozygous stable
mutants. The sequence of the target site
contained in the sgRNA is an important factor
affecting the overall mutagenic efficiency of the
CRISPR/Cas9 system, as different sgRNAs can
result in very different efficiencies when targeting

the same gene (Ma et al., 2016).
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mutants. The sequence of the target site
(Khan et al., 2023) This diagram depicts the
three gene- editing technologies.
CRISPR/Cas9 is the simplest andquickest to
design and construct, whereas ZFNs are the
most complicated and expensive.
CRISPR/Cas9, on the other hand, works as a

single unit.

High-Throughput Markers

The high-quality phenotypic data are crucial for
enhanced cotton yield. This study reveals that
HTP offers a lot of potential for data collection
and analysis while assessing phenotypic traits in
cotton in the form of cheaper input costs and
resources(Bolouri et al., 2024). Imaging and
sensor technologies based on spectral, thermal,
fluorescence, and 3D sensors are the most
useful and powerful tools for evaluating crop
characteristics, tracking crop growth and
development, and assessing cotton health. With
the emergence of HTP technologies, several
ground and aerial-based platform systems for
phenotypic and agronomic research in cotton
have been built(Pabuayon et al., 2019).

The high-throughput phenotyping
technology  developed in  the field
reconstructed precise 3D surface models.
Multiple morphological parameters at the
plot level, such as plant height, projected
canopy area, and plant volume, were retrieved
concurrently. Because of its relatively large
data collection and processing capacity, the
device aids in the repetitive scanning of the
field. The measured morphological features
had the highest correlation with eventual

yield between 67 and 109 DAP. Further

research will focus on using additional sensor
data to derive more phenotypic features from
the 3D point cloud. Although this method
was only tested on cotton plants, it has proven
to be a successful application(S. Sun et al.,

2018).

Genomic Breeding

Cotton genomic sequencing has made
significant advancements in recent years,
with multiple high-quality reference genomes
for G. hirsutum and G. barbadense. This
research has enabled the researchers to
identify crucial genes involved in fibre
growth, insect resistance, and stress tolerance
in cotton(Collard & Mackill, 2008b).
Furthermore, genomic approaches such as
molecular markers and gene editing
technologies are becoming more common for
accurate cotton breeding. However, in the
face of several challenges, including ongoing
global growth,  complex environmental
conditions, and decreasing genetic gain
effects of breeding new cotton varieties, the
cotton research community must urgently
rethink and design the future of cotton
breeding(Kun et al., 2025). Also, genomic
selection, another tool for estimating GEBV,
has proven application in testing individuals
because it is not dependent on the late
measurement phenotype, which significantly
reduces the generation interval. It estimates
GEBV using marker information from the
entire genome, which considerably enhances
its accuracy. Furthermore, genomic selection
can estimate some features that are difficult
to quantify phenotypically (Zhai, 2023).
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Digital Technologies
Cotton must continue its fibre market
leadership as the most abundant and natural
fibre of choice for a wide range of industrial
and commercial applications. To do this,
cotton production, which has traditionally
been input-intensive and has an indelible
negative environmental impact, must be
continuously refined to use the fewest inputs
while optimizing yield, fibre quality, and
profit using existing and developing
technology. To fully benefit from new
advanced techniques and technologies as
they are developed globally, these enabling
tools
(such as variety breeding, improved irrigation
systems/biodegradable
mulching, autonomous aerial systems,
computer vision/agricultural remote sensing
techniques, robotic
multipurpose  platforms, HDPT, and
chemical topping) for cotton agronomy
optimization must be continuously improved
upon. Some of these tools have been
thoroughly studied and commercialized in

the global cotton industry (Adeleke, 2024).

harvesters and

Conclusion

Cotton is an important cash crop which plays
a pivotal role in textile production, and
agriculture is subject to many external factors.
Changing climatic conditions worsen the
situation of cotton development. Both biotic
and abiotic stress negatively affected the
increasing demand for high-quality cotton.
Traditional breeding methods have less
genetic diversity, thus leading to a decline in
cotton innovation. Integration of marker-
assisted breeding and genetic mapping
techniques can revolutionize cotton breeding
by identifying QTLs which can improve
desired traits. Recent studies have also found
genes and markers which can directly locate
the desired trait. However, integrating
conventional breeding through genome
editing, high-throughput markers, and
molecular breeding designs, many of the
constraints of traditional breeding may be
overcome for the new era of cotton assisted
with cotton.
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